Graph Sparsification Approaches for Laplacian Smoothing
نویسندگان
چکیده
Given a statistical estimation problem where regularization is performed according to the structure of a large, dense graph G, we consider fitting the statistical estimate using a sparsified surrogate graph G̃, which shares the vertices of G but has far fewer edges, and is thus more tractable to work with computationally. We examine three types of sparsification: spectral sparsification, which can be seen as the result of sampling edges from the graph with probabilities proportional to their effective resistances, and two simpler sparsifiers, which sample edges uniformly from the graph, either globally or locally. We provide strong theoretical and experimental results, demonstrating that sparsification before estimation can give statistically sensible solutions, with significant computational savings.
منابع مشابه
Supplement to “ Graph Sparsification Approaches for Laplacian Smoothing ”
This document contains proofs, supplementary details, and supplementary experiments for the paper " Graph Sparsification Approaches for Laplacian Smoothing ". All section numbers, equation numbers, and figure numbers in this supplementary document are preceded by the letter A, to distinguish them from those from the main paper. Part (a). By optimality ofˆθ for problem (5), y − ˆ θ 2 2 + λ ˆ θ T...
متن کاملTowards Scalable Spectral Clustering via Spectrum-Preserving Sparsification
The eigendeomposition of nearest-neighbor (NN) graph Laplacian matrices is the main computational bottleneck in spectral clustering. In this work, we introduce a highly-scalable, spectrum-preserving graph sparsification algorithm that enables to build ultra-sparse NN (u-NN) graphs with guaranteed preservation of the original graph spectrums, such as the first few eigenvectors of the original gr...
متن کاملTechnical Report: Using Laplacian Methods, RKHS Smoothing Splines and Bayesian Estimation as a framework for Regression on Graph and Graph Related Domains
1 Laplacian Methods: An Overview 2 1.1 De nition: The Laplacian operator of a Graph . . . . . . . . . . 2 1.2 Properties of the Laplacian and its Spectrum . . . . . . . . . . . 4 1.2.1 Spectrum of L and e L: Graph eigenvalues and eigenvectors: 4 1.2.2 Other interesting / useful properties of the normalized Laplacian (Chung): . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Laplacians of Weight...
متن کاملSpectral Sparsification of Graphs
We introduce a new notion of graph sparsification based on spectral similarity of graph Laplacians: spectral sparsification requires that the Laplacian quadratic form of the sparsifier approximate that of the original. This is equivalent to saying that the Laplacian of the sparsifier is a good preconditioner for the Laplacian of the original. We prove that every graph has a spectral sparsifier ...
متن کاملIncremental Spectral Sparsification for Large-Scale Graph-Based Semi-Supervised Learning
While the harmonic function solution performs well in many semi-supervised learning (SSL) tasks, it is known to scale poorly with the number of samples. Recent successful and scalable methods, such as the eigenfunction method [11] focus on efficiently approximating the whole spectrum of the graph Laplacian constructed from the data. This is in contrast to various subsampling and quantization me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016